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Abstract— Unmanned Aerial Vehicles (UAVs) fleets are be-
coming more apparent in both military and civilian applica-
tions. However security of these systems still remains unsat-
isfactory if a strong adversary model is considered. The aim
of this position paper is to draw requirements for this kind
of adversaries and to propose theoretical solutions based on an
embedded Secure Element (SE) that could help to accommodate
these requirements.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly used
in military and civilian applications. For instance, in the
civilian applications they can be used for monitoring forest
fires, searching missing people in avalanches, etc. However,
most of UAVs being small and light they cannot be equipped
with heavy equipments (e.g. heavy sensors or many sensors
at the same time). Therefore UAVs often embed very few
dedicated sensors and they have to collaborate together and
fly in a swarm to provide all the features. Swarm formation
helps simple UAVs to collectively form a complex multi-
feature fleet; however, if there is no redundancy in the fleet
it might become heavily dependent of each and every UAV of
the fleet. In addition flying in swarm is helpful and efficient
to cover a larger geographic area for the aforementioned
applications. Such flights require a collaboration between
UAVs which lead them to communicate in a way similar
to Mobile Ad hoc Network (MANet) or Delay/Disruptive
Tolerant Network (DTN) and as a result become exposed to
the same security concerns.

In some contexts (like the civilian applications) security
issues might not be of high significance or their exploitation
might not have a high impact. However, in military applica-
tions it is crucial to address them. For instance UAVs need
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to securely store data like flight-plan for the mission, photos,
coordinates of points of interest (enemies or allies) which are
invaluable assets for an opponent. Similarly to avoid attacks
at network level, routing (if applicable) must be secured.
Nevertheless among all of the potential security problems,
capture of UAV will be particularly discussed in this paper.

A. Contribution

In this paper, our main focus is on the enhancement of
the security of UAVs fleets. The salient contributions of this
paper are as follows:

1) discussion on the adversary model for UAVs fleets;
2) definition of a list of security requirements, which are

derived from functional requirements and address the
relevant adversary model;

3) proposals of candidate Secure Elements (SE) that can
help a UAV to support the identified functional and
security requirements;

4) comparison with existing works that proposed the de-
ployment of “secure elements” on unmanned vehicles.

B. Structure of the Paper

Section II discusses the strong adversary model that we
consider for UAV fleets. In section III, we list the re-
quirements that a UAV equipped with a SE should satisfy
to address the defined adversary model and we present a
list of candidates for the SEs. Section IV compares our
proposal with the related work. Then section V presents our
future works for implementing our proposal along with our
concluding remarks.

II. ADVERSARY MODEL

In this paper we consider a strong adversary model with
a high attack potential. For instance the adversary has
capabilities and knowledge to capture a UAV, to perform
side-channel or fault injection or other physical, software or
combined attacks in order to gain access to (or to modify
for his profit) some secret data (e.g. cryptographic keys),
software or hardware.

A. Capture of UAV by an Attacker

In this section we assume that the attacker can capture a
UAV that is in functional state (i.e. there is no difference
between the captured UAV and one in flight). It means that
if there are self destruction mechanisms like the ones we



will mention in section IV the attacker is able to bypass
or deactivate them. Even worst the attacker might perform
attacks during the flight1.

B. Attacks on a “Captured” UAV

Once a UAV is captured, the opponent can perform various
well-known attacks studied and applied during past decades
mainly in the world of smart cards. Even if a smart card
(under its different form factors) is considered without any
doubt, one of the most secure devices which runs success-
fully in the worst adversary conditions (where even its owner
can be malicious), it has been and is still subject to very
advanced attacks like:

• Side-channel attacks [14], [17], [32], [50], [53]. This
kind of blackbox attacks consists in observing some
information leakage from algorithms running on the
target. From these leakages, different kinds of infor-
mation can be retrieved (e.g. cryptographic keys [43],
sequence of opcodes executed [62]). The nature of
leakages can be time-based [42], the power consump-
tion with several families of attacks (Simple Power
Analysis [43], Differential Power Analysis [43], High-
Order Differential Power Analysis [47], Corellation
Power Analysis [23]), the electromagnetic radiations
with the same declination of families of attacks (Simple
Electromagnetic Analysis [35], [55], Differential Elec-
tromagnetic Analysis [5], [35], High-Order Differential
Electromagnetic Analysis, Corellation Electromagnetic
Analysis) or combination of different sources [6], [64].
There also exist some other powerful attacks using side-
channels like Template-Attacks [24], [56].

• Fault injection attacks [15], [21], [36], [37], [44], [59].
This kind of attacks consists in perturbing, usually
during a short time, the execution of a process for
instance by using a laser or voltage glitches to reach
a state the attacker can take advantage of. For instance,
using fault injection at the right time on a RSA signature
process, an attacker can recover very quickly the private
key used [21] in exploiting the erroneous signatures
delivered by the blackbox system signing the message.
With Differential Fault Analysis, secret key cryptosys-
tems like DES [20] or AES [34] are also vunerable.

• Physical attacks [44], [58]. This kind of attacks en-
compasses microprobing, circuitery modification with
a Focused Ion Beam system or a laser cuter, etc.

• Software attacks. This kind of attacks is highly depen-
dent on the possibility to load applications on the target.
The loading can be or not protected by an authentication
mechanism (but it can still be circumvented by another
attack). However, if application loading is possible,
it can be feasible to perform and sometime achieve
some attacks from inside the target against other hosted
applications or against the platform of the target [30],
[49].

1It is important to underline that the operating attacks mentioned in
section II-B on a flying UAV (even if it should not be easy) are equivalent
to have captured the UAV.

• Combined attacks [16], [63]. These attacks often com-
bine fault injection during execution of a code loaded
or already present in the target to alter the application
execution in order to gain additional access priviledges.

These attacks are not only applicable to smart card but also
to any processor [14], [17], [37], [53], [60] and thus to a
UAV.

C. Attacks on a UAV in a Network
At the best of our knowledge, there is no paper specifically

addressing attacks that a UAV can be subjected to through
the network in a fleet or a swarm. We thus consider that the
adversary can perform similar attacks to those existing in
MANets, DTN and Wireless Sensors Networks. In particular,
the attacker can perform the easiest attacks on a wireless link:
a Denial-of-Service (DoS) [65]. This attack can be achieved:

• at the physical level by interfering on radio frequencies
used by the UAVs (jamming attack);

• at the link level by exploiting the medium access
control backoff and retransmission procedures (collision
attacks);

• at the network level by using routing loop attacks [46];
• at the transport level using a flooding attack or a

desynchronization attack [33].
If communications are not ciphered, the opponent can

perform eavesdropping, packet injection or corruption and
he can even attempt Man-in-the-Middle or relay attacks.

The attacker can also build a rogue UAV to attempt some
attacks on routing protocols [22], [31], [40] like: blackhole
attack, selective forwarding attack, sinkhole attack, rushing
attack, sybil attack, wormhole attack, etc.

Some application specific attacks can also be performed
but they are beyond the scope of this paper.

D. Rationale for the Adversary Model
In recent work, some academic researchers have done a

Correlation Power Analysis [48] on Virtex-4 and Virtex-5
family, i.e. Xilinx FPGAs that are widely used in UAVs
(including the Predator [66]). They shown that the encryption
mechanism can be completely broken with moderate effort.
Thus, a strong adversary model makes sense, especially in
the context of military usage of UAVs fleets since the oppo-
nent can be a government-controlled organization capable of
performing forensic analysis or attacks of the UAVs.

The reader should note that for all of the aforementioned
attacks there are corresponding countermeasures which are
well known to the industry and academia. The countermea-
sures that are implemented must not impact the real time
capacities of the UAV, especially regarding its auto-pilot and
its responsiveness to external, GPS and Inertial Measurement
Unit (IMU) events. It is even more important because we are
considering fleets of UAVs and not a single UAV.

III. REQUIREMENTS
This section describes the functional requirements that a

UAV equiped with a SE should satisfy. Thereafter, based
on the functional requirements and adversary model, we
stipulate the security requirements.



A. Functional Requirements

For a wide adoption, UAVs fleets should satisfy some
functional requirements.

• (FR1) The fleet should be autonomous and should not
rely on communication with its base/user to be more
stealthy in the adversary conditions of the mission (e.g.
intensive long RF communication with the base may
be easier to locate than short range communication
between UAVs).

• (FR2) The fleet should be easy and transparent to
manage both in terms of functionality and security and
management should be possible prior or during the fleet
operations. For instance, at a scheduling step, the user
just needs to define the mission she wishes the fleet
to perform. Then, when rescheduling the mission is
needed, (for instance if user wants to include new objec-
tives like new measurements from embedded sensors),
the update of the mission may be done during the refu-
elling in energy (e.g. in air from more powerful UAVs)
or with new UAVs joining the current fleet to transmit
the new mission. In addition, the user should not have
to worry about the underlying security architecture for
communication and management of the fleet.

• (FR3) The fleet should be reliable. It means that each
UAV can have a dedicated mission but, if needed, for
some reasons (e.g. failure, too low energy level to
achieve the mission), it may decide to entrust its mission
to another UAV according to the capabilities in term
of equipments (e.g. sensors) and software stack of this
UAV.

• (FR4) A UAVs fleet has to perform optimally in the
adversely territories/environments. It thus must be able
to analyze the situation and make decisions in real-time.
Therefore, any hardware included in the system should
not incur unnecessary performance penalties.

From these requirements, it means that the fleet should be
self-organized and should be equipped with some sort of
swarm intelligence.

B. Security Requirements

According to the adversary model defined in section II and
from the functional requirements defined above, UAVs of the
fleet should satisfy the following security requirements.

• (SR1) The UAV should be SE-driven to ensure security
and privacy of its missions. In addition, the security
architecture of the UAV system should not incur perfor-
mance penalties. Therefore, any proposal for the UAV
system should be robust and optimal in both security
and performance — preserving a real-time processing
environment with high level of assurance.

• (SR2) The whole UAV should be tamper resistant, or at
least a part of it (the SE).

• (SR3) The UAV should provide assurance in imple-
mented security mechanisms to its user. For instance
it, or more precisely its SE, has to be subjected to
a security evaluation and certification to prove that

it can resist an attacker compliant with the strong
adversary model defined above. The certification can
be Common Criteria evaluation [2] with a minimum
in the Evaluation Assurance Level of EAL4+, where
‘+’ means ‘augmented’ with security assurance require-
ment component AVA VAN5 (i.e. the highest assurance
component of the vulnerabilities analysis family of the
vulnerability assessment class).

• (SR4) The UAV at a very basic level should provide a
secure unique ID on which the whole fleet can rely for
its management and networking operations.

• (SR5) The UAV should provide secure key management
and crytographic features to protect communication
integrity and confidentiality among the members of the
fleet.

• (SR6) UAV should provide a secure storage for data
collected (e.g. measurements, photos) and/or those used
for the purpose of the mission (e.g. flight-plan for the
mission, coordinates of points of interest).

• (SR7) The UAV should provide a secure multi appli-
cation platform. This requirement is justified since in
the context of SE-driven UAV there will be installation
of new applications (for new purposes according to
FR2) or transfer of applications between UAVs (when
an entrustment of a mission from a deficient UAV
to another one occurs according to FR3). Update of
already embedded applications containing flaws with
new versions covering the threats can even occur. This
SR facilitates a scalable and flexible design, where new
sensors can be added to individual UAVs depending
upon the mission and the associated sensor management
application can then be loaded onto the SE. Note that
installation or update can occur for instance during air
refuelling.

An additional functional requirement may be optionally
added if the context of SE-driven UAV is accepted: (FR5) the
SE may have its own communication capabilities to commu-
nicate with other SEs which can form an overlay network (for
specific control operations) parallel to the one that already
exists between UAVs (i.e. the SE can communicate with its
own RF communication module operating with a dedicated
part of the RF spectrum).

These requirements define a secure Machine to Machine
(M2M) platform over a fleet of UAVs.

C. Candidate Secure Elements

In this section, we present several candidates for the SE.
As none of them is satisfying all of the requirements defined
above, we are defining our SE, that we will develop in our
future activities.

1) Wireless Sensor Node: A Wireless Sensor Node
(WSN) has communicating capabilities that would satisfy
FR5. However as it has been shown in [31], in its current
“form” a WSN cannot be the SE because in case of capture it
fails to satisfy SR2 to SR7 and thus SR1. However it should
be noted that some work is in progress to design, evaluate
and certified WSN in very specific contexts [18], [19] or to



add to it a Trusted Platform Module (that is a candidate for
being a SE discussed below) to enhance its own security [39].

2) Trusted Platform Module: A Trusted Platform Module
(TPM) is an interesting candidate since it can partially satisfy
SR2 to SR6. TPM may fail to satisfy SR3 for which the
device has to provide an assurance of its own security. Indeed
there is no compulsory requirement that a TPM has to be
subjected to security evaluation and certification. Since in the
traditional deployments, TPMs are going through the security
evaluation, they are intrinsically considered to be trusted
and secure. Therefore, they are used to provide a trusted
measurement of the individual applications and Operating
System (OS). However, a TPM itself cannot verify whether
an application or the OS is secure or not. This decision
has to be taken by the user based on the (trusted) integrity
measurement provided by the TPM. Similarly, the TPM
partially satisfies the SR6 as it does have small (secure)
storage but mostly for cryptographic material. The TPM
storage can potentially be increased or data can be stored in
encrypted form outside the TPM where the encryption key
remains securely stored. However, the later scheme will only
incur additional computational requirements, thus adding
performance penalties. However it cannot execute code, thus
it fails to satisfy SR1, and SR7. As the UAVs fleet, once
in a mission, should not be constantly required to provide
state attestations by the base station or peer UAVs because
it will incur unnecessary performance penalty violating both
FR1 and FR4. Including a TPM will only be useful if the
UAVs fleet is grounded, or in instances where the base station
requires to verify the state of the system before the mission
starts. In addition, since a TPM does not have standalone
decision capabilities it would fail to satisfy FR3 and FR5.

3) Smart Card: Smart cards are designed with a strong
adversary model in mind which assumes that they are in the
possession of a potentially malicious user. Under such an
adversarial model, the smart cards are required to provide
a secure and trusted execution environment. Therefore, the
smart card platform has a matured architecture that can
adequately support the functional and security requirements
given in the previous sections. As a result, smart cards
intrinsically support SR2 to SR6.

To comprehensively support SR7, the ownerhip model
for the deployment of smart card based SE in UAV should
support User Centric Smart Card Ownership Model (UCOM)
[8] which provides a dynamic, scalable and flexible architec-
ture for multi-application platforms. In addition, the UCOM
proposal of Trusted Execution and Environment Manager
(TEM) [13] has the potential to provide a strong trusted
device and (application) execution architecture. Furthermore,
UCOM based smart cards also support remote attestation
and validation mechanims [7], [11], [12] along with a secure
architecture for application migration [10] between different
smart cards.

For a collaborative and dynamic capability to reassign
resources to accomplish a mission (FR3), the UCOM based
smart card architecture provides a solid foundation as per the
proposal for a secure and trusted application sharing mecha-

nism between two or more smart cards [9]. Thus the UCOM
smart card with TEM has all qualities to withstand SR1.
Although, it can be argued that smart cards do not possess
the RF communication capabilities, such a functionality can
be built around it as a standalone module.

4) Active RFID: Active RFID are difficult to categorize
because a mobile phone could be considered as a long range
RFID with additional functionalities (by the way it can also
be considered as a big WSN). In our vision, we are more
considering as Active RFID devices like the OpenBeacon
Tag [1] but with a secure chip.

However, even if there exist some active RFIDs (e.g.
remote control keys for cars), initial experiments seem to
show they are vulnerable to several attacks [41], [52].
However, it must take into account the active RFIDs studied
are necessarily vulnerable because they are not designed to
withstand a high potential attack.

At best, current Active RFIDs are only supporting SR4,
SR5 and FR5.

5) Our proposal: Our proposal of SE consists in bringing
together the best of active RFID, WSN and smart card in
what can be called an Active Radio Frequency Smart Secure
Device (ARFSSD) to address the only features that the smart
card fails to satisfy: the optional FR5. Then ARFSSD would
then satisfy all the above requirements.

As illustrated in figure 1 our first prototype will be based
on an ARM-based platform as the ubiquitous Raspberry Pi
embedding Linux and the PC/SC middleware to support
a smart card reader. These components will only serve
to interface between the UCOM smart card and the RF
communication module that we will use. The dotted line
represents communication level between the smart card and
the RF communication module whereas the plain arrows
represent the real communications between the different
subsystems of the prototype. We have not yet decided which

Fig. 1. An overview of the future prototype of our Active Radio Frequency
Smart Secure Device

RF communication module we will use since making a final
decision requires to run some experimentations. However we
have in mind, the NRF24L01 from Nordic Semicondutor,
the Xbee module (a ZigbBee implementation) from Digi
International or the Wifly module (a Wi-Fi implementation)
from Roving Networks.

6) Summary: As shown in table I, smart card is actually
the most serious candidate. However, ARFSSD should fullfil
the only missing smart card functional requirement to be the
ultimate solution.

IV. RELATED WORK

There is very little work in publicly available literature
related to the security of identity in fleets of UAVs. This



TABLE I
REQUIREMENTS FULLFILLED BY THE CANDIDATE SE

SR1 SR2 SR3 SR4 SR5 SR6 SR7 FR5
WSN x
TPM x x x x x
Smart Card x x x x x x x
Active RFID x x x
Our proposal x x x x x x x x

must be explored further because it is on the security of data
involved in the authentication mechanisms that the trust for
future transactions between UAVs (data exchange, routing in
the cases where it is used, etc.) relies. In security architec-
tures for fleets of UAVs supporting group communications
(e.g. [54]) or collaborative work (e.g. [57]), the possibility
of an attacker with high attack potential (i.e. for instance
being able to physically access a UAV after its capture)
is almost never considered. In the few studies considering
this kind of attacker model, the physical security of the
elements used to support identification, i.e. the heart of
security, is relegated to the assumptions on the equipment
used or additional countermeasures such as self-destruction
of the UAV [45], [67]. However attacks can occur during
flights which can defeat the physical protection. The only
papers that actually consider to protect the identifiers are
those initiated by Chaumette et al. through the use of Java
Card [25], [26]. Some other papers [27], [38] are considering
a secure token (i.e. a smart card) in swarms of UAVs but
without giving details except it is used to securely store some
data and perform some ciphering operations.

Since our proposal of ARFSSD can be seen as an exten-
sion of these works through the use of active RFIDs, it is
interesting to survey the use of RFIDs in nearby contexts. In
the area of fleets of robots, passive RFIDs are used to make
a sort of communication between robots for the allocation
of tasks [61] or for synchronization [68]. However, in no
case these papers address any security concerns. Other papers
related to the use of RFIDs for UAVs include an inventory of
goods with a UAV carrying a RFID reader in a warehouse [4]
or an hypothetical future RFID injection under the skin of
people with cyber insects [3] which is far from our concerns.

V. FUTURE WORKS AND CONCLUSIONS

From the requirements listed in section III, we will develop
a first prototype of ARFSSD as a Secure Element for UAVs
fleets. It is worth noting how such UAVs fleets equipped with
our SE raise problems close to those we are addressing in
other contexts (e.g. Multilevel Mobile Java Card Grid [28],
[29] and multilevel, secure (smart card), communication
based services on a fleet of mobile phones [51]). We thus
believe that our work will impact not only the domain of
fleets of UAVs but more generally the domain of mobile
communicating objects, i.e. the Internet of Things.
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