
Efficient Use of Random Delays 
in Embedded Software

Michael Tunstall & Olivier Benoit



What are Random Delays?

Dummy functions inserted into embedded software that have no 
purpose other than to pause computation for a random period 
of time. E.g.

mov   a, RND
mov   r0, a

Delay_Label:
djnz  r0, Delay_Label

Software Random delays will be considered in this 
presentation.
Hardware versions exist that will ignore or repeat CPU 
instructions (see Clavier et al., 2000).



Power Attack Countermeasure

Statistical analysis of 
small differences in 
power consumption to 
predict intermediate 
states.



Random Delays

Random delays in software desynchronise events.
An attacker is obliged to resynchronise events a posteriori.



Fault Injection

Injecting Faults to retrieve information on secret/private keys or 
to compromise the security of the operating system.
Random delays provide a moving target, an attacker must wait 
until fault and target coincide.



Dynamic Resynchronisation

Events such as I/O, programming EEPROM, coprocessor 
usage can allow dynamic resynchronisation. E.g. a DSA on a 
smart card:

It is considered prudent to include a random delay whose length 
is distributed over a large interval after each event. 

gk k-1

I/O

Power 
Consumption



Random Delays Within a Command

Command

SWData
1 2 3 4 10

Mean(x)

?(x)

Random delays occur at numerous points within a command.
Typically, the length of each random delay is uniformly 
distributed.
To prevent DPA it is prudent to include a delay between every 
sub-function of a round function in a block cipher, so only a 
local resynchronisation is possible.



Proposed Optimisation

Modify the distribution of the lengths of random delay to 
increase the standard deviation and decrease the mean 
cumulative delay.

The delays are an overhead to the computation. 

Random values generated on chip will be uniformly distributed.
This can be modified by using a uniformly distributed random to 
look up values in a table. The frequency of entries in a table 
dictates the distribution, i.e.

{ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, …}

Number of entries needs to be a power of 2 for ease of use.



Proposed Optimisation

The number of entries in look up table was given by the formula:

where the resulting lengths are distributed in [0,N].
After simulating the possibilities of this formula for N=255, a heuristic 
optimum was found for k=0.92 for any a and b.

Different values of a and b produce differing effects



Examples – for lengths in [0,255]

SWData
1 2 3 4 10

Mean(y)

?(y)

Command



Attack Scenarios

The proposed optimisation should not be used if:
An attacker can dynamically resynchronise after an event, and
There is a potential fault attack that can be conducted after one random 
delay.

In all other attack scenarios an attacker will be faced with the
sum of several (at least) random delays.

An attacker can determine that the lengths of random delays 
are distributed in the proposed manner using a chi-squared 
test.

Somewhat lengthy procedure.
Less effort to ignore the modified distribution.
Only of interest if an attacker can isolate one random delay.



Conclusion

The proposed modification the distribution of lengths of random 
delays can be used to increase the desynchronisation produced 
by random delays in embedded software.

This also reduces the time lost because of the use of software random 
delays.

However, the lengths of random delays used to hinder dynamic 
synchronisation should be uniformly distributed.


	Efficient Use of Random Delays in Embedded Software
	What are Random Delays?
	Power Attack Countermeasure
	Random Delays
	Fault Injection
	Dynamic Resynchronisation
	Random Delays Within a Command
	Proposed Optimisation
	Proposed Optimisation
	Examples – for lengths in [0,255]
	Attack Scenarios
	Conclusion

