Michael Tunstall & Olivier Benoit



What are Random Delays?

+ Dummy functions inserted into embedded software that have no

purpose other than to pause computation for a random period
of time. E.g.

mov a, RND
mov ro, a
Delay Label:
dynz r0, Delay Label

+ Software Random delays will be considered in this
presentation.

+ Hardware versions exist that will ignore or repeat CPU
instructions (see Clavier et al., 2000).




Power Attack Countermeasure

+ Statistical analysis of
small differences in
power consumption to
predict intermediate
states.

B UCC




Random Delays

+ Random delays in software desynchronise events.
+ An attacker is obliged to resynchronise events a posteriori.

B UCC



Fault Injection

+ Injecting Faults to retrieve information on secret/private keys or
to compromise the security of the operating system.

+ Random delays provide a moving target, an attacker must wait
until fault and target coincide.

|




Dynamic Resynchronisation

+ Events such as 1/O, programming EEPROM, coprocessor
usage can allow dynamic resynchronisation. E.g. a DSA on a
smart card:

/0O

Power k
Consumption g k-1

+ It is considered prudent to include a random delay whose length
IS distributed over a large interval after each event.

B UCC




Random Delays Within a Command

+ Random delays occur at numerous points within a command.

+ Typically, the length of each random delay is uniformly
distributed.

+ To prevent DPA it is prudent to include a delay between every

Command

sub-function of a round function in a block cipher, so only a
local resynchronisation is possible.

_-_-_‘ j?_;-

Data

SW

-~
~—~~
&

—am----r




Proposed Optimisation

+ Modify the distribution of the lengths of random delay to
increase the standard deviation and decrease the mean
cumulative delay.

= The delays are an overhead to the computation.

+ Random values generated on chip will be uniformly distributed.

+ This can be modified by using a uniformly distributed random to
look up values in a table. The frequency of entries in a table
dictates the distribution, i.e.

{0,0,0,0,0, 1,12, 1,1, 2, 2, 2, .}
+ Number of entries needs to be a power of 2 for ease of use.

B UCC



Proposed Optimisation

+ The number of entries in look up table was given by the formula:
y = [ak® + bk —7]

where the resulting lengths are distributed in [O,N].

+ After simulating the possibilities of this formula for N=255, a heuristic
optimum was found for k=0.92 for any a and b.

1
| I ot

+ Different values of a and b produce differing effects

B UCC




Examples — for lengths in [0,255]
Command | <2>——<:>—<4> (10)
= Data SwW

. ‘ .f;fl g'l \l'
| \ "/ \ \ ;," “f: \IIH
L | N N Y AN
I
Mean(y)
Table 1. Some Parameter Characteristics for Tables of 2° Entries
a b ke Mean T
7% decrease % increase
25 10 0.88 22.6 30.7
26 6 0.89 32.8 23.5
26 12 0.87 19.7 32.5
32 8 0.86 314 25.8




Attack Scenarios

+ The proposed optimisation should not be used if:
= An attacker can dynamically resynchronise after an event, and

= There is a potential fault attack that can be conducted after one random
delay.

+ In all other attack scenarios an attacker will be faced with the
sum of several (at least) random delays.

+ An attacker can determine that the lengths of random delays

are distributed in the proposed manner using a chi-squared
test.

= Somewhat lengthy procedure.
= Less effort to ignore the modified distribution.
= Only of interest if an attacker can isolate one random delay.

B UCC




Conclusion

+ The proposed modification the distribution of lengths of random
delays can be used to increase the desynchronisation produced
by random delays in embedded software.

= This also reduces the time lost because of the use of software random
delays.

+ However, the lengths of random delays used to hinder dynamic
synchronisation should be uniformly distributed.

B UCC



	Efficient Use of Random Delays in Embedded Software
	What are Random Delays?
	Power Attack Countermeasure
	Random Delays
	Fault Injection
	Dynamic Resynchronisation
	Random Delays Within a Command
	Proposed Optimisation
	Proposed Optimisation
	Examples – for lengths in [0,255]
	Attack Scenarios
	Conclusion

